

Respiratory Motion Compensation in Robotic Spinal Osteotomy

Candidate: Livia Fabiano

Advisor: **Prof. Elena De Momi** Co-Advisor: **Lorenzo Casadio, Elisa Iovene**

Master of Science in Biomedical Engineering – Ingegneria Biomedica April 3rd 2025

Academic Year 2023-2024

Clinical Problem

"Spinal deformity is **defined** as the spinal curvature or alignment that deviates from the normal limits" [1]

Spinal deformities incidence in global population

Globally, about 1 out of 5 people suffer from spinal deformities [2]

Clinical Problem

"Spinal deformity is **defined** as the spinal curvature or alignment that deviates from the normal limits" [1]

Vertebral Osteotomies

- 6 different types of surgeries
- The choice depends on the entity of the deformity [3]

"Spinal deformity is defined as the spinal curvature or alignment that deviates from the normal limits" [1]

- to **30 40°** in the sagittal plane.
- Effective for rigid deformities. \checkmark
- More invasive and technical Х demanding.

"Spinal deformity is **defined** as the spinal curvature or alignment that deviates from the normal limits" [1]

1

demanding.

Effective for rigid deformities.

More invasive and technical

 \checkmark

X

"Spinal deformity is **defined** as the spinal curvature or alignment that deviates from the normal limits" [1]

demanding.

 \checkmark

X

Effective for rigid deformities.

More invasive and technical

MEDICAL SCENARIO

Currently only **manually performed** with osteotomes and fluoroscopy

- **High** surgeon's **workload**
- X High radiation exposure
- **Limited** surgical **precision**

Respiration induced vertical vertebral displacement [4]

- Vertical displacement around 2-4mm [4]
- X Risk of tissue damage
- **Compromise** overall surgical **accuracy**

[5] JIANG, Bowen, et al. (2019) [7] L [6] PV Bhagvath, P Mercier, and AF Hall . (2023) [8] H

3

[5] JIANG, Bowen, et al. (2019) [8] HAN, Zhe, et al. (2024) [6] PV Bhagvath, P Mercier, and AF Hall . (2023)

Aim of the work

Solution

Autonomous Robot Control Strategy

Respiratory motion prediction

Different predictive algorithms' performances have been investigated.

MEDICAL SCENARIO

STATE OF THE ART **OBJECTIVE** MATERIALS AND METHODS RESULTS MEDICAL SCENARIO CONCLUSIONS NA **HROS Control Strategy Force Control** ex 8 The **control** is initially set to **force** to perform the cut. \checkmark Maintain a constant force between the drill and the \checkmark Hybrid Force – Position control strategy vertebra. **Osteotomy Plane Vertex** 160 Active Compensation Force Terr 0.20 Robot tooltip •10 INHALING \dot{x}_{curr} [um] [a] [140 [140 [140] $\boldsymbol{D}(\boldsymbol{D}_{n_{i}}\dot{\boldsymbol{x}}_{curr})$ J(q)tex predicted Vertex Reached 8 -0.05 **EXHALING** real -0.10 $\boldsymbol{f}_d(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$ -0.20 x_{vertex,pred} 6 Time [s] F_{comp} z-coordinates in { Robotic Manipulator x_{ref} $(\overline{T})^{\tau_{cmd}}$ e(t)Æ \widetilde{x} $\boldsymbol{J}_{pinv}^{-1}(\boldsymbol{x})$ * PID k F_{target} x_{curr} **Forward Kinematics** 60 **F**_{sensor} F_{env} Force 50 20 30 40 60 70 Sensor Time [s] **Force Control**

Force signal retrieved from the load cell is **low-pass filtered** ✓ Avoid undesired oscillations and potential tissue damage

 $F_{filt}(t) = \alpha * F_{sensor}(t) + (1 - \alpha) * F_{filt}(t - 1), \ \alpha = 0, 1$

Active Compensation Force term

✓ Avoid drilling force's periodic oscillation around the force target value

-0.05

-0.10

-0.15

-0.20

Force signal without compensation [15]

EXHALING

Active compensation Force Term

Force signal with compensation

Time [s]

MEDICAL SCENARIO

RESULTS CONCLUSIONS

MEDICAL SCENARIO

System Validation

OBJECTIVE

Protocol

14 trials performed during the drilling of 3D PLA vertebra samples with the same **vertex position** to guarantee repeatability.

✓ 7 Drilling Trials with osteotomy angle (**O.A.**) = 30° ✓ 7 Drilling Trials with asteotomy angle (**O.A.**) = 40°

Position Control

Trajectory Error $\mathbf{TJE} = \left\| P_{tool} - P_{proj} \right\| [mm]$

Static Target Error $\mathbf{TE}_{\mathbf{static}} = \|P_{tool} - P_{vert}\| \ [mm]$

Dynamic Target Error $\mathbf{TE}_{\mathbf{dynamic}} = \|P_{tool} - P_{vert}\| \ [mm]$

Vertex Crossing Count VCC = n° of Vertex Crossings

 P_{tool} : robot's tooltip position P_{proj} : orthogonal projection of P_{tool} on the osteotomy planes P_{vert} : osteotomy planes' vertex

O.A.	40°	30°
TJE [mm]	0,55 ± 0,31	0,54 ± 0,30
TE _{static} [mm]	0,45 ± 0,037	0,467±0,02
TE _{dynamic} [mm]	0,55 ± 0,047	0,524 ± 0,043
VCC	0	0

ACHIEVEMENTS

An **autonomous hybrid** Force – Position robotic control coupled with **active respiratory** motion **compensation** algorithm has been developed for **Vertebral Osteotomy** surgical procedure

Clinical perspective:

- Less risk of tissue damage.
- Improved procedure accuracy.
- Reduced surgeon's workload.

Technical perspective:

- Proper compensation of the respiratory induced vertebral displacement.
- ✓ Sub-millimeter precision.
- Invariant to different osteotomy angles entities.

Thank you for your attention!