

Non-Invasive Cognitive Workload Assessment in Robotic Teleoperated Surgery Using Eye-Tracking

Candidate: Alice Carcone

Advisor: **Prof. Elena De Momi** Co-Advisor: **Alberto Rota, Stefano Pomati**

Master of Science in Biomedical Engineering – Ingegneria Biomedica April 3rd 2025

Academic Year 2023-2024

Clinical Context

 \bigcirc

Robotic Surgery

increased precision

increased technique and interface complexity

Workload Monitoring

Prevents cognitive overload Varying data interpretation

NEOF

[1] Yurko et al. (2010) [2] Blikkendaal et al. (2017)

METHODOLOGY

State of the Art

Traditional methods ^[3]

subjective not real-time disrupt surgical workflow

NEOF

Physiological parameters monitoring ^[4]

[3] Elek et al. (2021)

[4] Cao et al. (2022)

invasive

OBJECTIVE

METHODOLOGY

State of the Art

Eye-Tracking derived parameters ^[5]

objective continuous real-time not invasive

Set of infrared emitter-receiver pairs

Frontal Emitter: detects center of pupil

NEOF

Lateral Emitters: detect corneal reflection

Output vector determines gaze direction

5

Open Issues and Objectives

Open Issues:

Not established **non-invasive method** to monitor surgeons' workload

No clear strategy on **how to apply workload estimation** to optimize surgical performance and decision-making

No defined **threshold** to classify high vs. low workload

Objectives:

Leverage eye-tracking data to derive an **objective workload metric**

Validate the tool by correlating workload with surgeons' subjective phase difficulty ratings

Analyze **workload variations** and establish trends across different surgical phases.

Aim:

Develop a post-operative non-invasive eye-tracking-based tool for cognitive workload estimation during robotic-assisted surgery.

CONCLUSIONS

6

Workload Metric Construction Pipeline

Preprocessing

Preprocessing

NEOF

- 1. Invalid value handling
- 2. Gap interpolation (< 75 ms)
- 3. Median filter
- 4. Transformation from tracker's reference system {T} a to the global one {G}:

 $p_G = R_x(\alpha) \cdot p_T$

5. Computation of visual angles:

$$\theta = \arctan\left(\frac{P_x - O_x}{|P_z - O_z|}\right) \cdot \frac{180}{\pi}$$
$$\phi = \arctan\left(\frac{P_y - O_y}{|P_z - O_z|}\right) \cdot \frac{180}{\pi}$$

 p_G = gaze point in {G} p_T = gaze point in {T} $R_x(\alpha)$ = rotation matrix α = rotation angle P_x, P_y, P_z = coordinates of gaze endpoint $\boldsymbol{O}_x, \boldsymbol{O}_y, \boldsymbol{O}_z$ = coordinates of gaze starting point $\boldsymbol{\theta}$ = horizontal gaze angle $\boldsymbol{\phi}$ = vertical gaze angle

Metrics Extraction

Pupil diameter

Blinks count

Gaze entropy

Fixation count

Saccades count Fixation duration

procedure

Metrics Extraction

10s, 30s, 1min,

2min time

windows

1. Mean pupil diameter

$$P_w = \frac{P_{r,w} + P_{l,w}}{2}$$

w = window of length 10s/30s/1min/2min P_w = overall pupil diameter in w $P_{r,w}$ = average pupil diameter of right eye in w $P_{l,w}$ = average pupil diameter of left eye in w

[75, 400]*ms* = range of blinks duration ^[6]

Metrics Extraction

Metrics Extraction

NEOF

↔ 50 ms

← 50 ms

1 min

 P_{w}

 $\boldsymbol{B}_{\boldsymbol{W}}$

 H_{w}

3.

w = window of length 10s/30s/1min/2min

n = number of cells of the field of view

 p_i = probability of gaze occurring in the i-th cell

 H_w = total gaze entropy in w

Metrics Extraction

Metrics Extraction

neor

Spatial probability distribution of the gaze on the screen

ncor

OBJECTIVE

METHODOLOGY

8

Metrics Extraction

NEOF

OBJECTIVE

Metrics Extraction

OBJECTIVE

Metrics Extraction

Metrics Extraction

NEOF

 T_w = is the mean fixation duration within w t_f = duration of fixation f

Workload Computation

Workload Computation

POLITECNICO MILANO 1863

the six metrics corresponding to window w

9

Workload Validation Pipeline

NEOF

Data Collection

Subjective Difficulty Annotation

Subjective Difficulty Annotation

- 1. Subdivision of procedures into **phases**
- 2. Computation of **mean difficulty scores** (scale 1-10)
- 3. Computation of weighted difficulty

 $D_w = \sum_{p=1}^9 \left(\frac{t_{p,w}}{t_w} \cdot d_p \right)$

Phase	Difficulty
Access intraperitoneal space	2.8
Mobilize and isolate cystic duct	4.8
Mobilize and isolate cystic artery	4.8
Ligate cystic duct	3.4
Ligate cystic artery Dissect gallbladder	3.6 4.4
Irrigate and inspect liver bed	3.2
Remove gallbladder	3.2
Remove trocars	2

NGOE

OBJECTIVE

METHODOLOGY

RESULTS

13

Validation and Results

Validation of the Method

Critical Analysis and Limitations

Possible solutions

- Moderate and valid correlation between objective cognitive load and surgeons' subjective assessments
- **Stability** across different time windows, with no significant impact on results.
- Results are statistically more reliable in **longer procedures**
- Imbalanced surgical phases distribution
- Qualitative difficulty imputation **not validated** in literature
- Refinement of the **raw data collection** process
- Data balancing techniques for machine learning to address dataset imbalance

Conclusions

Addressing Open Issues

Eye-tracking offers a promising **non-invasive** and **objective** way to assess surgeon workload

A **validated** workload metric can enhance decision-making and performance

Defining a **universal threshold** remains an open challenge

Future Developments

Combine eye-tracking with other non-invasive physiological signals

- real-time **alert systems** for cognitive overload
- adaptive robotic assistance based on workload fluctuations
- personalized training programs

Develop a more **systematic** method for selfreported workload ratings

Thank you