

Télécom Physique Strasbourg

An optical fiber and deep neural network-based method to estimate the 3D position of endovascular devices in autonomous endovascular robot control

Author: Francesco Dettori

Supervisors: Prof. Elena De Momi - Nearlab Prof. Stéphane Cotin - Inria Prof. Florent Nageotte - TPS

April 3rd 2025 - A.Y. 2024/2025

» Introduction **State of the Art** Materials and Methods **Results and Conclusion**

Medical Scenario

Endovascular interventions

Catheters and guidewires navigated into blood vessels to the target location.

Minimally invasive^[1]
Quick patient recovery^[1]
Reduced complications^[1]

[1] – Alsawas et al. (2017)

Introduction

Critical points^[1]

Radiation exposure
Contrast agent injection
Device control limitations

Guidewire and catheter in real fluoroscopic images.

Trend in Robotics

Objectives of research field

- *Minimizing X-ray exposure* for patient and clinician
- Reducing use of contrast agent
- Making the guidance *faster and safer*

Autonomous endovascular robotic navigation

Device 3D shape

Anatomy

>>

[2] – Scarponi et al. (2024)

Introduction

State of the Art Materials and Methods Results and Conclusion

Goal Definition

Introduction **»** State of the Art Materials and Methods **Results and Conclusion**

3D Shape Reconstruction

3D Shape Reconstruction

Related Works

Workflow

Introduction State of the Art » Materials and Methods **Results and Conclusion**

Input and Output

Data acquisition

>>

>>

Neural Network training

Neural Network training and testing

General Model

Generalization

Range of shapes to be covered

IΛΠ

Tested on acquired test-set (~9k samples)

Compared against the literature

Materials and Methods

>>> Results and Conclusion

Application-specific Model

Range of shapes to be covered

Generalization

- Tested on 15 shapes on a vascular phantom
- Cor

Compared against FBGS[™] commercial system on the same shapes

Introduction State of the Art Materials and Methods >> Results and Conclusion

General model against Literature

Results and Conclusion

Test against FBGS™ commercial system

Results and Conclusion

Achievements and Perspectives

Introduction >> State of the Art >> Materials and Methods

Results and Conclusion

>>

École d'ingénieurs

Télécom Physique Strasbourg

Thank you for your kind attention!

And a special thank to my supervisors **Prof. Elena De Momi**, **Prof. Stéphane Cotin,** and **Prof. Florent Nageotte**, and co-supervisors **Anna Bicchi**, **Angela Peloso,** and **Phd Valentina Scarponi**