3D simulator for intra-operative path planning with a deformable position-based dynamics environment in keyhole neurosurgery

Sara Zucchelli, 920288

Supervisor: Prof. Elena De Momi
Co-supervisor: Dott. Ing. Alice Segato

School of Industrial and Information Engineering
Department of Electronics, Information and Bioengineering

Master of Science in Biomedical Engineering

Academic year 2019-2020
Brain surgery
a highly invasive procedure that allows accessing the brain to treat a variety of conditions

→ improve accuracy and quality through minimally invasive neurosurgery

KEYHOLE NEUROSURGERY (KN)
Access the brain through a burr hole in the skull

Procedures
• Biopsy
• Convection enhanced delivery CED
• Deep brain stimulation DBS

Advantages
✓ Lower complications
✓ Better post-operative outcomes
Introduction: problems

PROBLEMS OF A STATIC ENVIRONMENT

- No consideration of cerebral displacement (from MM to CM)
- Less precision in avoiding obstacles in intra-operative phase

DYNAMIC ENVIRONMENT

- Simulates the brain structures displacement

DIFFICULTIES

- Viscoelastic behaviour of the brain
- Computational resources
- Patient specificity
State of the art: soft tissue deformation in neurosurgery

SYNTHETIC PHANTOM MODELS
- Gelatine or hydrogels
- Replicate in vitro the brain’s behaviour
- Cope with deformations occurring during neurosurgical procedures

LIMITATIONS
- High computational time → unsuitable for real-time applications
- Complicated process
- Overshooting problem of equilibrium configurations

FORCE-BASED DYNAMIC MODELS
- Include finite element methods (FEM), mass-spring systems
- Model by manipulating internal and external forces (accelerations)
- Determine positions through numerical integration of the derived accelerations

SOLUTION
- POSITION-BASED DYNAMICS (PBD) APPROACH
Aim of the work

This thesis aims to develop a 3D simulator for pre-and intra-operative path planning with a dynamic environment based on a PBD approach to assist the surgeon during keyhole neurosurgery, ensuring realism during the procedure and a precise and safe setup to reduce the risks for the patient.

Pre- and Intra-operative path planning framework implemented in Unity with possibility to operate both manually, with the use of a joystick, and automatically.

Dynamic environment: an innovative approach is applied to the brain model to simulate needle-tissue and tissue-tissue deformation simulation.

Hardware integration (Neuromate) with EDEN2020 frameworks.
Methods: simulator architecture

1. START SIMULATION

2. SELECT THE PROCEDURE
 - Deep Brain Stimulation
 - Convection Enhanced Delivery

3. KINEMATIC CONSTRAINTS SELECTION
 - MAX CURVATURE: 0.014 mm
 - SPEED: 0.4 mm/s
 - OUTER DIAMETER: 2.5 mm

4. SELECT THE TARGET
 - Tumor
 - LF Pallidum
 - RH Pallidum
 - LF Thalamus
 - RH Thalamus
 - LF Ventricle
 - RH Ventricle

5. ENTRY POINT SELECTION

6. TRAJECTORY GENERATION

7. TRAJECTORY VISUALISATION

Sara Zucchelli
Methods : Position-Based Dynamics (PBD)

PBD compute the time evolution of a dynamic system by directly updating positions. Objects are discretized as clusters of particles described by their positions \mathbf{p}_i, velocities \mathbf{v}_i, and mass m_i subject to a set of J positional constraints $C_j(\mathbf{p})$.

Deformation computation is a constraint-function optimization problem.

GOAL OF THE SOLVER

$$C(\mathbf{p} + \Delta \mathbf{p}) = 0$$

$\Delta \mathbf{p}$ COMPUTED BY SOLVING

$$C(\mathbf{p} + \Delta \mathbf{p}) \approx C(\mathbf{p}) + \nabla_p C(\mathbf{p}) \cdot \Delta \mathbf{p} = 0$$

$$C(\mathbf{p}_1, \mathbf{p}_2) = |\mathbf{p}_1 - \mathbf{p}_2|^2 - d^2$$
Methods: Position-Based Dynamics (PBD)

- Particle spacing
- Cluster spacing
- Particle radius
- Cluster radius
- Collision distance
- Cluster stiffness
- Link radius
- Link stiffness
- Collision distance

Mesh of the object

NVIDIA Flex UNITY PLUGIN

Flex Soft Actor + Flex Container

Deformable object
Experimental setup: workflow

Catheter insertion
PBN

SIMULATED TISSUE
DEFORMATIONS

REAL TISSUE
DEFORMATIONS

Human White matter parameters

In-vitro experiments: gelatin phantom

Human Gray deep matter parameters

Simulation experiments: Human brain

Human brain parameters

In-vivo experiments: ovine brain

CALIBRATION

VALIDATION
Experimental setup: white matter calibration

SIMULATION
3D Flex Model of Brain with fiducial slice at the depth of 31.4 mm

REAL
tissue phantom in Hydrogel with fiducial slice at the depth of 31.4 mm

Calculation of this metrics at each frame f and k insertion:

- Penetration depth of the catheter
 \[\Delta depth^k_f = \| q^k_{init} - q^k_f \| \]

- Average displacement of the N particles of the phantom
 \[\Delta disp^k_f = \frac{1}{N} \sum \| p^k_{init} - p^k_f \| \]

- Displacement of phantom particles center of mass (CoM)
 \[\Delta centerDisp_f = \| c_{init} - c_f \| \]

Comparison between **REAL** and **SIMULATION** deformations

$q_{init}, p_{init}, c_{init}$: catheter, particles, CoM initial positions

q_f, p_f, c_f : catheter, particles, CoM final positions
Experimental setup: grey deep matter calibration

Tuning of the grey matter Flex parameters following knowing the differences in the various brain structures' behaviours:

Average displacement of the N particles of the phantom

\[
\Delta disp_f = \frac{1}{N} \sum \| p_{init} - p_f \|
\]

Displacement of CoM of each brain structures

\[
\Delta disp_{l.f} = \| c_{l.init} - c_{l.f} \|
\]

Comparison between LITERATURE and SIMULATION range of deformations for each brain structures

Human Brain Structures

- Amygdala
- Brain Stem
- Caudate
- Cerebellum
- Hippocampus
- Gyri and Sulci
- Pallidum
- Putamen
- Thalamus
- Tumor

p_{init}, c_{init}: particles, CoM initial positions
p_f, c_f: particles, CoM final positions
Experimental setup: FleX model validation

For each \(k = 1, \ldots, 5 \) equally distanced points on each side \(s = 1, \ldots, 4 \) of the hole created from the catheter insertion for each frame \(f \) calculation of:

Average displacement of the \(N \) particles of the ovine phantom

\[
\Delta disp^k_f = \frac{1}{N} \sum \| p^k_{init} - p^k_f \|
\]

\(p^k_{init}, c^k_{init} \): particles initial positions
\(p^k_f \): particles final positions

Comparison between IN-VIVO and SIMULATED ovine experiments

Sara Zucchelli
Results: FleX model calibration

White matter calibration with cube and hydrogel phantom

Displacement with respect to Insertion Depth

- Local peak with a subsequent decrease in deformation caused by the initial insertion of the catheter into the material.
- The deeper the catheter continues, the more the displacements increase.
Results: FleX model calibration

Fine tuning of the grey deep matter parameters

Brain structures shift heatmap

Reflects the expected values of deformations reported in literature

Sara Zucchelli
Results: FleX model calibration

Optimal set of parameters for each brain structures

<table>
<thead>
<tr>
<th>Flex Objects</th>
<th>Particle Spacing</th>
<th>Cluster Spacing and Radius</th>
<th>Cluster Stiffness</th>
<th>Link Radius</th>
<th>Link Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amygdala</td>
<td>0,005</td>
<td>0,005</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Caudate</td>
<td>0,005</td>
<td>0,005</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Pallidum</td>
<td>0,005</td>
<td>0,006</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>0,005</td>
<td>0,005</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0,005</td>
<td>0,005</td>
<td>0,001</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Ventricle</td>
<td>0,0065</td>
<td>0,0065</td>
<td>0,001</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Putamen</td>
<td>0,0065</td>
<td>0,0065</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Gyri</td>
<td>0,0066</td>
<td>0,0066</td>
<td>0,002</td>
<td>0,009</td>
<td>0,001</td>
</tr>
<tr>
<td>Sulci</td>
<td>0,007</td>
<td>0,007</td>
<td>0,001</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Brain Stem</td>
<td>0,007</td>
<td>0,007</td>
<td>0,0005</td>
<td>0,005</td>
<td>0,001</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>0,006</td>
<td>0,006</td>
<td>0,002</td>
<td>0,0065</td>
<td>0,001</td>
</tr>
</tbody>
</table>
Results: FleX model validation

The deformation ranges are comparable. The model can be applied to different types of datasets and represents a suitable model for the simulation of cerebral deformations induced by the catheter's insertion.

Mismatch: 5.16%
Discussion

INTEGRATION
UNITY-ROS

rosbridge_websocket

ROS

ubuntu
Conclusions and future work

The simulator accurately mimics cerebral deformations and viscoelastic brain behavior providing important visual feedback in order to reach the target precisely. ROS-Unity integration makes it applicable to real situations for both pre- and intra-operative phases.

- User friendly interface with possibility to use directly MRI volume
- Automation of FleX parameters calibration procedure

ACHIEVEMENT:
- Submitted to IROS conference and RAL journal
- Poster submitted to The Hamlyn Symposium on Medical Robotics 2021

FUTURE WORKS:

Sara Zucchelli
Thank you

Prof. Elena De Momi
Dott. Ing. Alice Segato
Dott. Ing. Chiara Di Vece