Head-mounted display visualization system for surgical operations

Supervisor: Prof. Elena De Momi
Co-supervisors: Dr. Hang Su, Dr. Salih Ertug Ovur

Candidate: Debora Bonvino, 920622

Academic year 2019-2020
Minimally Invasive Surgery – Robot Assisted Surgery

Introduction

Minimally Invasive Surgery

Robot-Assisted Surgery

Operative Side

Patient Side

Video Stream

Endoscope

Surgical Instruments

Console

Manipulators

Operator Side

Hand’s Movement

Video Stream

Debora Bonvino

POLITECNICO DI MILANO
Minimally Invasive Surgery

- Camera held by assistant
- 2D visualization on an external monitor

Limited field of view
Lack of depth perception
Hard eye-hand coordination

Robot - Assisted Surgery

- 3D visualization on the console
- 2D external monitor for first assistant

Limited field of view
Hard eye-hand coordination
Uncomfortable head movements

[G. Chen et al., 2009]

[C.D. Van’t Hullenaar et al., 2017]
State of the art

Debora Bonvino

HIDDEN STRUCTURE RECOGNITION
PRE – INTRA OPERATIVE FUSION
AR DEVICE – ROBOT INTEGRATION

Move towards more versatile and intuitive solutions

• Case – Dependent Systems
• Hard eye-hand coordination
• Uncomfortable head movements

[S. Drouin et al., 2015]
[I.M. Sauer et al., 2017]
[L. Qian et al., 2018]
Aim of the work

Implementation of a novel human-machine interface for AR visualization system and teleoperation using an AR device

- User-friendly interface
- More ergonomic system
- Coordination improvement
- Accuracy improvement
System architecture

PATIENT SIDE
- Endoscope
- Manipulator

OPERATOR SIDE
- Head-Mounted Display
- joystick

TELEOPERATION
- Video stream
- Manipulators’ position
- Surgeon’s movement

COMMUNICATION CHANNEL

AUGMENTED SCENARIO

GRAPHIC INTERFACE
- Linux
- ubuntu®
- ROS
- Windows 10
- unity
- STEAM®VR

POLITECNICO DI MILANO
Graphic Interface Setup

- **Methods**
 - Video stream
 - Video split
 - Left image compressed
 - Right image compressed
 - Unity compressed

- **Unity Environment Implementation**

- **ROS**

- **Results**

- **Conclusions**
Methods

Debora Bonvino

Graphic Interface Setup

Introduction | State of the art | Aim | Methods | Results | Conclusions

-[P. Zhao et al., 2010]

PHYSIOLOGICAL BINOCULAR VISION BASED

[unity]

POLITECNICO DI MILANO
Graphical Interface Setup

Methods

Debora Bonvino

UNITY ENVIRONMENT IMPLEMENTATION

VIDEO STREAM

PHYSIOLOGICAL BINOCULAR VISION BASED

[6.P. Zhao et al., 2010]
AR Device – dVRK Integration

Methods

WORLD – Laboratory Reference System
ECM – Endoscope Control Manipulator
HMD – Head-Mounted Display
PSM – Patient Side Manipulator
AR Device - dVRK Integration

PATIENT SIDE

OPERATOR SIDE

ECM – Endoscope Control Manipulator
HMD – Head-Mounted Display
PSM – Patient Side Manipulator
Debora Bonvino

AR Device - dVRK Integration

Methods

\[T_{HMD}^{ECM} = \text{inv}(T_{ECM}^{world}) \cdot T_{HMD}^{world} \]

WORLD – Laboratory Reference System
ECM – Endoscope Control Manipulator
HMD – Head-Mounted Display
PSM – Patient Side Manipulator
Methods

Debora Bonvino

AR Device - dVRK Integration

WORLD – Laboratory Reference System
ECM – Endoscope Control Manipulator
HMD – Head-Mounted Display
PSM – Patient Side Manipulator
VIRTUAL – Unity Reference System
Methods

Debora Bonvino

AR Device - dVRK Integration

Introduction | State of the art | Aim | Methods | Results | Conclusions

HMD’s POSITION

CONOTROLLERS’ POSITION

JOYSTICK BUTTON STATE

ENABLE/DISABLE

TRACKPAD

TRIGGER

GRIP

Debora Bonvino

POLITECNICO DI MILANO
Augmented Reality Development

Methods

AR DEVICE – DA VINCI RESEARCH KIT (dVRK) INTEGRATION

VIRTUAL INFORMATION

REAL SCENARIO

AR VISION SYSTEM SETUP

AUGMENTED REALITY DEVELOPMENT

Debora Bonvino

POLITECNICO DI MILANO
Augmented Reality Development

Methods

- **INSTRUMENTS LOCALIZATOR**
 - Support for orientation

- **TARGET HIGHLIGHTER**
 - Better target localization

- **TARGET LOCALIZATOR**
 - Support for navigation
Methods

Test and Evaluation

<table>
<thead>
<tr>
<th>Introduction</th>
<th>State of the art</th>
<th>Aim</th>
<th>Methods</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

- **Task Design**
- **Experimental Protocol**

Debora Bonvino
Task Design – Pick and Place

Methods

- **TASK 1 – CHESSBOARD**
- **TASK 2 – HEIGHT POSITIONING**
- **TASK 3 – RING INSERTION**

STANDARD CONFIGURATION

AR CONFIGURATION

Debora Bonvino

POLITECNICO DI MILANO
The document details an experimental protocol involving 10 non-medical participants. The protocol includes the following tasks:

Standard Configuration
- Task 1: Chessboard
- Task 2: Height positioning
- Task 3: Ring insertion

Augmented Reality (AR) Configuration
- Task 1: Chessboard
- Task 2: Height positioning
- Task 3: Ring insertion

Performance Metrics
- **Successful Score** ($S_{u,k}$): The total number of successful attempts (S) with specific user (u) for specific task repetition (k). Minimum: 0, Maximum: 3.

Completion Time ($T_{u,k}$): Time taken to complete a specific task repetition (k) for specific user (u).

Performance Index ($P_{u,k}$): $P_{u,k} = \frac{T_{u,k}}{S_{u,k}}$
- T: Completion time
- S: Successful score
- u: Specific user
- k: Specific task repetition

References
- Mnyusiwalla et al., 2020
- Campo et al., 2010
Results

Debora Bonvino

Successful Score

<table>
<thead>
<tr>
<th>TASK 1</th>
<th>TASK 2</th>
<th>TASK 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>2.17</td>
<td>2.03</td>
<td>2.17</td>
</tr>
</tbody>
</table>

AVERAGE SUCCESSFUL SCORE

- **STANDARD**: 0.00390
- **AR**: 0.00402

STATISTICAL ANALYSIS

- **Wilcoxon signed-rank test** shown significative statistical differences ($\alpha = 0.05$)

p - values

- **TASK 1**: < 0.05
- **TASK 2**:
- **TASK 3**: < 0.05

Wilcoxon signed-rank test shown significative statistical differences ($\alpha = 0.05$)
Results

Debora Bonvino

Completion Time

STATISTICAL ANALYSIS

- **STD** = Standard configuration

<table>
<thead>
<tr>
<th>TASK 1</th>
<th>TASK 2</th>
<th>TASK 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Wilcoxon signed-rank test shown significative statistical differences (α = 0.05)

- **Wilcoxon signed-rank test**

p - values

- TASK 1: < 0.05
- TASK 2: < 0.05
- TASK 3: < 0.05

STD = Standard configuration
Performance Index

Results

Debora Bonvino

STATISTICAL ANALYSIS

Wilcoxon signed-rank test shown significative statistical differences ($\alpha = 0.05$)

STD = Standard configuration

Wilcoxon signed-rank test shown significative statistical differences ($\alpha = 0.05$)

<table>
<thead>
<tr>
<th>Task</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK 1</td>
<td>< 0.05</td>
</tr>
<tr>
<td>TASK 2</td>
<td>< 0.05</td>
</tr>
<tr>
<td>TASK 3</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
Results achieved suggest that the system developed provides:

- User-friendly interface
- Orientation improvement
- Efficiency improvement

Training is needed.
Future works

Conclusions

ANATOMICAL 3D MODELS REGISTRATION

VISUAL FEEDBACK

MORE COMPLEX SURGICAL TASKS
Thank you for your attention!

< debora.bonvino@mail.polimi.it >
Bridge the Windows system and Linux one:
Results

Debora Bonvino

Latency

<table>
<thead>
<tr>
<th>Introduction</th>
<th>State of the art</th>
<th>Aim</th>
<th>Methods</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

HAND MOTION

- Video Stream: 30 Hz
- Delay: 15 ms

PSM MOTION

- 90 Hz
- Delay: 45 ms

HEAD MOTION

- ECM MOTION
HTC VIVE PRO

Methods

HARDWARE AND ACCESSORIES

- Head-Mounted display
- Joysticks
- Base stations
- Vive Tracker
- Wireless adapter

DEVICE CONFIGURATION

Debora Bonvino
Qualitative analysis

SUBJECTS FEATURES:

AGE: 26.5 ± 1.3601

GENDER: 60% Female
40% Male

DOMINANT HAND

What is your level of experience with virtual reality system?

- None
- Limited - I have tried once or twice
- Good - I have used a similar system sometimes
- High - I have some experience with VR systems

How much do you rate your level of experience with video games?

Debora Bonvino
QUESTIONNAIRE:

I think I would need support from a technician to use this interface

- **STANDARD**
 - 1: 0 (0%)
 - 2: 2 (20%)
 - 3: 2 (20%)
 - 4: 6 (60%)
 - 5: 0 (0%)

- **AR**
 - 1: 0 (0%)
 - 2: 1 (10%)
 - 3: 3 (30%)
 - 4: 5 (50%)
 - 5: 1 (10%)
I still had/needed to learn a lot before becoming familiar with this interface.
Debora Bonvino

Qualitative analysis

I felt comfortable using this interface

QUESTIONNAIRE:
Reference Systems

Methods

Debora Bonvino
HMD – JOYSTICK TRANSFORMATION

Methods

Debora Bonvino

HMD

ECM

\[T_{ECM}^{HMD} = \text{inv}(T_{ECM}^{world}) \times T_{HMD}^{world} \]

Controllers’ position

PSM

\[T_{PSM}^{Joystick} = \text{inv}(T_{PSM}^{world}) \times T_{Joystick}^{world} \]
Methods

Debora Bonvino

PSM TRANSFORMATION

\(T^{Unity}_{PSM} = T^{Unity}_{ECM} \cdot T^{ECM}_{PSM} \)

PSMs’ position

Unity

PSM

ECM

PSM

ECM

HMD

POLITECNICO DI MILANO